Deepfix: Statistical Post-editing of Statistical Machine Translation Using Deep Syntactic Analysis

نویسندگان

  • Rudolf Rosa
  • David Marecek
  • Ales Tamchyna
چکیده

Deepfix is a statistical post-editing system for improving the quality of statistical machine translation outputs. It attempts to correct errors in verb-noun valency using deep syntactic analysis and a simple probabilistic model of valency. On the English-to-Czech translation pair, we show that statistical post-editing of statistical machine translation leads to an improvement of the translation quality when helped by deep linguistic knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulis: An Open Source Transfer Decoder for Deep Syntactic Statistical Machine Translation

We evaluated the productivity increase of statistical MT post-editing as compared to traditional translation in a two-day test involving twelve participants translating from English to French, Italian, German, and Spanish. The test setup followed an empirical methodology. A random subset of the entire new content produced in our company during a given year was translated with statistical MT eng...

متن کامل

A Neural Network Architecture for Detecting Grammatical Errors in Statistical Machine Translation

In this paper we present a Neural Network (NN) architecture for detecting grammatical errors in Statistical Machine Translation (SMT) using monolingual morpho-syntactic word representations in combination with surface and syntactic context windows. We test our approach on two language pairs and two tasks, namely detecting grammatical errors and predicting overall post-editing effort. Our result...

متن کامل

Using Statistical Post-editing to Improve the Output of Rule-based Machine Translation System

USING STATISTICAL POST-EDITING TO IMPROVE THE OUTPUT OF RULE-BASED MACHINE TRANSLATION SYSTEM

متن کامل

Phrase-Based and Deep Syntactic English-to-Czech Statistical Machine Translation

This paper describes our two contributions to WMT08 shared task: factored phrase-based model using Moses and a probabilistic treetransfer model at a deep syntactic layer.

متن کامل

Statistical Post-Editing of Machine Translation for Domain Adaptation

This paper presents a statistical approach to adapt out-of-domain machine translation systems to the medical domain through an unsupervised post-editing step. A statistical post-editing model is built on statistical machine translation (SMT) outputs aligned with their translation references. Evaluations carried out to translate medical texts from French to English show that an out-of-domain mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013